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Abstract. In this p3per we study the behaviour of the modulation wave vector in 
[(CH3)4NlzZnCb-,Brx compounds as a function of composition ( x )  and temperature. W e  
compare the results of this x-ray study with those of morphologid experiments. The two 
results are quite well correlated. showing several lock-in phases of the modulated structure 
being stable over a temperature range of a few degrees. In particular, the existence of a recently 
found new phase with modulation wave vector q = +c* is confirmed. We also find evidence 

and q = 6 (or 3)~'. These phases are interpreted within the framework of a microscopic 
model. 

for phases with q = Yc', q = $ (or 2)~ ' .  q = IC I 4 r  , q = rc 3 .  , q = &c*, q = # (or g)c* 
7 

1. Introduction 

In this paper we study a so-called modulated crystal structure. Whereas classical crystal 
structures can be described by three periodicities (a, b, c) and a set of symmetry 
operators, modulated crystal structures are described by 3 + d (d = 1 in the present case) 
periodicities [14]. The extra parameters are necessary to describe the periodic distortion 
(the modulation) of the average lattice. This distortion is described on the reciprocal lattice 
of the average structure by an additional wave vector q. If the modulation wave vector is a 
linear combination of the reciprocal basis vectors (a*, b" and c*) with rational fractions, the 
structure is commensurate and forms in fact a superstructure, otherwise it is incommensurate. 
The three-dimensional crystal structure we are able to observe is then an intersection of a 
3 + d-dimensional descriptive so-called superspace embedding with the three-dimensional 
real space. 

In x-ray-diffraction experiments the presence of a modulation wave vector shows up as 
generally weak spots, the so-called satellite reflections, besides the main reflections. These 
satellite reflections can be indexed by 3 + d integers. In the case of d = 1 this results in a 
labelling of the reflections with (hklm) instead of the usual (hkl). The main reflections, due 
to the average structure, are then labelled as (hklO). The position of the satellite reflections 
with respect to the main reflections, which latter are due to the basic structure without a 
modulation, represents the modulation wave vector. Interestingly, a modulation in a crystal 
structure has also macroscopic effects as it influences the morphology. Satellite faces are 
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formed, of which the relative orientations are directly correlated to the modulation wave 
vector. The normal of a face (hklm) is given by H = ha' + kb* + le' + mq. Thus, it is 
possible to determine the modulation wave vector from morphological experiments [5-101. 

[(CH3)4NJ2ZnC14-,Br, is a compound with an average p-K+04 structure [ 111. 
[(CHs)4N]2ZnC14,Br, has many phases of which most are modulated [12-161. The 
symmetry of the corresponding smctures can be described to a good approximation by 
a single (3 -I- l-dimensional) superspace group, each commensurate phase corresponding to 
a three-dimensional subgroup of this superspace group [6,17,18]. In all cases, changing the 
composition ( x )  in [ ( C H ~ ) ~ N ] Z Z ~ C ~ ~ - ~ B ~ ~  seems to lead to stable crystallographic phases. 

The phase diagram of [ (CHS)~N]~Z~CI~-,B~,  is shown in figure 1. As can be seen, 
for temperatures below the transition to the high-temperature (not modulated) paraphase, 
several incommensurate as well as commensurate regions exist (e.g. q = ) 2 and $c*). 
The magnitude and direction of the modulation wave vector q are a function of both 
composition x and temperature T. The behaviour of q as a function of x and T has 
been studied extensively by morphological experiments [9]. The results turned out to be 
in good agreement with the x-ray-diffraction studies of Colla [15]. As an intriguing result 
from the morphological study a new commensurate phase was found having a modulation 
wave vector q = Qc' within the incommensurate phase for values of x between 1.2 and 
2.2. In the phase diagram the change of composition can be interpreted as an increase of 
the intemal pressure of the crystal, due to the substitution of chloride ions by the larger 
bromide ions. This change in internal pressure can be compared with the effect of an 
external hydrostatic pressure. 

Gesi [19] gave a brief review of the interpretation of experimental results on 
hydrostatic pressure effecting the lock-in transitions in various tetramethylammonium 
tetrahalogenometallic compounds, [N(CH3)4]2XY4 (X. Mn, Fe, CO, Ni, Cu, Zn; Y CI, 
Br). The techniques used were neutron and x-ray diffraction, and dielectric and DTA 
measurements. He found that the pressure-temperature phase diagrams of the chloride 
compounds with X = Mn, Fe, CO and Zn can be unified in a reduced p-T diagram. In 
this description the phases in the -MnBr4, -CoBr4 and -ZnBr4 compounds correspond to the 
high-pressure ones of the chloride compounds. The deuteration effect of the phase transition 
at high pressure is also discussed by this author. 

In order to find an explanation for the rich phase diagram of these tetramethylammonium 
tetrahalogenometallic compounds as well as that of others, in terms of a microscopical model 
one has to realize that the structure of the ground state is characterized by commensurate 
and incommensurate phases, each with their own specific modulation wave vector. Such 
a phase diagram shows some resemblance with that obtained with the ANNNI model [ZO, 
211 used to find the structure of a two-dimensional lsing lattice, with two interactions that 
are opposite in sign. Janssen and Tjon [22] used a so-called one-dimensional frustrated q44 
model, which is related to the A"NI model, to describe incommensurate and commensurate 
phases microscopically. The model results in ground-state configurations being a function 
of two parameters A' and B' (see [22] for a precise definition), which are related to the 
energy or temperature and the pressure parameter. Thus, a generalized phase diagram is 
obtained describing the ground-state configurations as a function of these parameters. The 
ground states of the different phases appearing are characterized by a modulation wave 
number, being nlm, n and m integer. If one of the parameters (A') in the model is 
relatively small, only two gound states are found, namely the ones with wave vector 6 
and (for a positive value of B'). If now A' increases, new phases, either commensurate 
or incommensurate, 'appear'. The first new commensurate phase has n / m  = ). Then 

' 5. 

1'. 
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Figure 1. The phase diagram of [(CHdaNlzZnCL,Br, containing several commensurately 
and inwmmensmely modulaled phases [9, 161. The modulation wave-vector parameter y 
and the space-group symmetry are indicated for all wmmensme phases. indicates Ti and * 
indicates Tc, both as determined by Vogels et ol 191; lines are guides to the eye. 

again, additional intermediate phases occur. The different generations of new values for 
the modulation wave number are characterized by the so-called Farey numbers, as far as 
commensurate phases are concerned. Two examples of a sequence of numbers, starting with 
two different pairs of initial values for nlm will be given further on. It should be noted that 
the wave numbers are rational. 

If one continues to generate Farey numbers, in the end one obtains all rational numbers 
lying between the two boundary values of the staaing ones. Selke and Duxbury [23] showed 
that these limiting values for the wave numbers form a complete devil's staircase. 

The aim of this paper is to report on a study of the modulation wave vector in 
[ ( C H ~ ) ~ " J Z Z ~ C I + ~ B ~ ~  in the neighbourhood of the recently found phase in morphological 
experiments, with q = Ac* [9 ] ,  using x-ray-scattering techniques. The results will be 
compared with those of the morphological study and interpreted in terms of the models 
described above. 

In the paraphase (T > Ti) the crystal is not modulated. The intensity of the x-ray 
satellite reflections in the incommensurate phase decreases as the temperature approaches 
that of the paraphase from below [15, 241. This decrease is due to a decreasing amplitude 
of the modulation wave vector. We used this phenomenon of vanishing satellite reflections 
to find 6. There is a second characteristic phase transition from the incommensurate phase 
to the first commensurate so-called lock-in phase at lower temperature T,. We will use 
the term lock-in phase also for the transitions to other commensurate phases at even lower 
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temperatures, 
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2. Experimental details 

We performed our x-ray experiments on an Enraf Nonius CAD-4 diffractometer, using 
dedicated software and MO Kcf radiation. Small crystals were cut from the same crystals 
we had used in the morphological experiments 191. These small crystals were glued on 
a thin glass fibre and were encapsulated by glue to prevent condensation of water on the 
crystal surface. Next, we put the crystal on a goniometer head of the CAD-4. After centring 
the crystal we determined the reciprocal-axis matrix, the cell parameters and the standard 
deviations. At first, we scanned more than 900 main reflections (hklO) and more than 900 
corresponding first-order satellite reflections (hklm) with m = 1 and m = -1. to determine 
the most important satellite and main reflections. Using the setting for which the superspace 
group is Pcmn(OOy)(ls -1) we chose the reflections of the forms {2 2 9 01, {3 7 0 O), 
{I2 0 0 0). (0 6 4 0) and [IO 0 6 0) to determine the parameters of the average cell. 
Given these cell parameters, the reflections (I  3 1 0). (1 3 1 1). (1 3 1 -I), (-1 3 I 0), 

(1 3 -1 -I), (0 2 0 0), (0 2 0 1) and (0 2 0 -1) were used to determine the modulation 
wave vector. As far as the error in the value of the wave vector ( y )  is concerned, we 
used the following procedure. For each composition ( x )  and temperature the five triplets of 
reflections (hk l l ) ,  (hkIO) and (hkl -1) were used to find five values for y .  Each triplet was 
chosen symmetrically around a main reflection, along the c*-direction, thus minimizing any 
systematic error along the direction in which y is determined. These five values for y were 
averaged and the standard-deviation values were determined from the standard deviation of 
each triplet value. 

Further, the relatively strong reflections (0 -1 4 0), (1 3 -I 0), (1  3 1 0), ( I  3 1 I), 
(1 3 1 -I), (0 2 0 0), (0 2 0 1) and (0 2 0 -1) were used to determine the intensity of the 
reflections, where in this case the ( M O )  reflections functioned as a standard calibration. 

We cooled the crystal with a constant air flow of 15 ml s- l .  We kept the gas itself at a 
constant temperature using a thermostatted spiralized cooling tube connected by hoses to a 
thermostatted watedethanol bath (figure 2). The tube itself and the hoses leading to and from 
it were well isolated. The temperature of the gas flow was measured just above the crystal, 
using a copper-constantan thermocouple with an electronic cold-junction compensator at 0 
"C and a millivoltmeter. We estimate that the temperature of the gas flow was constant 
within &O.l "C and that the absolute accuracy of the temperature measurements is &I "C. 
After stabilizing the temperature of the gas flow for about five minutes, we started our 
measurements, assuming that the crystal had enough time to adapt to the gas temperature, 
and indeed during the measurements (approximately 1 h) for which the crystal was held 
at the same temperature, we did not observe changes in q. Following earlier reports we 
investigated five compositions of [(CH,)4N],ZnCI4,BrX namely x = 0, 1.20, 1.60, 1.69 
and 2.19 respectively [9]. For several compositions two crystals were investigated and/or 
two temperature runs were performed. The temperature range examined was from about 
-3 "C to about 25 "C. 

(-1 3 1 I), (-1 3 1 -I), ( I  -3 1 O), (I -3 1 I), (1 -3 1 -I), ( I  3 -1 O), ( I  3 -1 I), 

3. Results 

First we checked the behaviour of the modulation wavevector. In figure 3 we plotted the 
size of the modulation parameter versus temperature for the different values of x z 0. 
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Figure 2. The experimental set-up. 1, gas pump; 2, taplflow meter; 3, thermostat; 4, cooling 
tube; 5, crystal; 6. detector; I ,  MO K a  source; 8, thermocouple and 9, thermal isolation. 

For x = 0 only three data points were determined, thirefore we omitted the corresponding 
figure. Note that the figures are sometimes composed of more than one temperature run or 
crystal. In these figures we observe different plateaus. The value for y we identify with a 
plateau was determined by a weighted average of the different (temperature) values. For this 
purpose, we gathered those values which could be averaged within their standard deviation 
to a single value. The error in this value of a plateau was determined from the corresponding 
standard-deviation values. In the following we will assign a commensurate wave number 
(nln) to the observed plateau values. The choice of the commensurate value is based on 
the relevant Farey numbers as mentioned in the introduction and will be explained in more 
detail in the discussion. In table 1 we summarize the results of the values of y for the 
different identified plateaus. 

We now come to the results on the intensities of the different reflections. In figure 4 
we plotted the intensity of different reflection spots as a function of temperature, for the 
different compositions. It can be seen that the intensity of the main reflections remains 
almost constant or increases slightly, while that of the satellite reflections decreases towards 
zero with increasing temperature. We note that, taking Ti as the temperature where the 
intensity of the satellite reflections becomes zero, Tj determined from the intensity is rather 
close to as determined by Colla et d [15, 161, the latter value being depicted in the 
figure (see also figure 1). Note that the intensities are scaled. For some compositions the 
intensities of the satellite reflections remain, though being very weak, non-zero slightly 
above Ti,  still indicating that there is at least a change at Ti. 
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Figure 3. The size of the modulation wavevector p = yc' as a (unction of temperature in 
[(CH~)aNIJlzZnCb-.Br,. Full circles represent a first x-ray measurement, open circles a second 
one on the same crystal: *represents a second series of x-ray measurements on a second crystal 
and x morphological data from [91. Arrows indicating Ti and 'G are from Colla ad 115, 161. 
Plateaus of constant y are indicated with a dolted line. The errors in y are smaller than the size 
of the symbols used. (a) x = 1.20; (b) x = 1.60; (c) x = 1.69; (d) x =2.19. 
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Fwre 4. The intensiw of main and satellite reflections as a function of temperature in 
[ ( C H ~ ) ~ N ] ~ Z ~ C L I - ~ S ~ ~  determined from x-ray measurements. AI1 intensities are scaled to 
an interval of 0-10. Arrows indicating ri and T. are from Colla et d 115, 161. The enos in 
the intensities are smaller than fhe size of the symbols used. (a) x = 1.20; (b) x = 1.60; (c) 
x = 1.69; (d) x = 2.19. 
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Table 1. The observed plateaus in the values for y for different compositions x. The 
corresponding temperature ranges are given. For the commensurate approximation of y see 
the text. 

x = o  x = 1.20 x = 1.60 x = 1.69 x = 2.19 

T ("C) Y 'recl Y T ('C) Y rrc1 Y r e o  y 

7.1-18.8 1.4-3.6 $ -0.5-3.7 f -1.0-2.3 4 -3.34.7 6 or 2 
0.4174 0.3591 0.3336 0.3340 0.3567 
(*0.002l) (i0.0036) (iO.0011) (10.0012) (&O.W07) 

6.0-11.6 9 6.7-9.5 b 6.6-7.6 -3.0-7.6 $ 
0.3702 0.3705 0.3632 0.3614 
(iO.001 I) (10.0007) (10.0011) (10.0014) 

0.3753 0.3620 
(10.0008) (*O.OOll) 

0.3781 
(iO.00I 1 )  

11.6-17.7 8 8.7-12.2 

14.7-17.2 $ or 3 

4. Discussion 

If we take the experimental errors into account-the morphological measurements have a 
larger uncertainty in the determination of y (roughly f 0.01); the x-ray measurements a 
larger uncertainty in the temperature determination-the results of the two experiments can 
be compared and show in general a large correlation. It should also be kept in mind that 
(apart from x = 1.20) at lower temperatures the data match better, while the main differences 
occur at higher temperature. As mentioned before the amplitude of the modulation decreases 
with T increasing towards the wansition to the paraphase, resulting in a decrease of the 
intensity of the satellite reflections and of the stability of the satellite faces, and thus leading 
to a smaller accuracy in the experimental determination of y .  

If we take the modulation wave vector into consideration we observe a smooth change 
in y for x = 1.20, with increasing temperature between the lock-in values. This also holds 
for x = 1.60, where lock-in phases are intermediated by incommensurate values for y .  For 
x = 1.69 the change in y ,  especially from the lock-in phase o f f  to that of +, seems to be 
somewhat less smooth. For x = 2.19~ there are practically no changes in y as a function of 
temperature, altough the two crystals show different values. 

From both the satellite intensities and the variation in y we are able to estimate I; and 
Tc. For x = 1.20 4 fits the data of Colla very well while no transition to the commensurate 
phase of y = f is found, as is suggested by the phase diagram of Colla [15]. For x = 1.60 
T, fits rather well, while T, is considerably higher (& 20 "C, instead of 15 "C). F0r.x = 1.69 
4 fits the data well, though Tc might be a bit higher. Here it is remarkable that the satellite 
intensities have very small remaining values for T Z. For x = 2.19 no clear phase 
transition can be observed, though the value for Z is roughly correct. 

It should be noted that when we regard the experimental results, the morphological 
experiment seems to be more sensitive to the modulation, as compared to x-ray 
experiments, because satellite forms are still observed at relatively higher temperatures 
in the incommensurate phase than satellite reflections. Whether this is due to the influence 
of the crystal surface, which is a crystallographic half plane and can therefore be regarded as 
an intrinsic defect, possibly stabilizing a commensurate value for the modulation, is not clear 
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at the moment. If the latter is relevant, this can also explain the remaining satellite reflection 
intensities in the paraphase. Another explanation for this remaining intensity can be found 
in the reported disorder in the orientation of the ZnCL te’uahedca in the paraphase [251. 
This disorder is probably related to the modulation in the incommensurate phase. The same 
s’uuctural disorder might explain the presence of satellite facets above T, for x = 1.20 and 
x = 1.69. With the x-ray experiments we observed several stable values for the size of the 
modulation wave vector as can be found in table 1. The modulation wave vector shows some 
resemblance to a so-called devil’s staircase as a function of temperature. The variation in y 
on a plateau as we measured can easily be explained by experimental errors. The fact that 
we observe many lock-in phases makes us believe that small effects, e.g. defects, impurities, 
inhomogeneities in the ratio CI/Br and the size of the crystal, easily ‘pin’ the modulation 
wavelength to a certain value. This also.explains the relatively small energy differences 
between certain lock-in phases (with comparable y). Furthermore memory effects play an 
essential role, because in some of the measurement runs on the same crystal, we found 
different lock-in values at comparable temperatures, although within a single run the value 
of y almost always either increased or stayed constant with increasing temperature. 

1 333 4000 

- 
3 
4 
5 
6 

7 

m 1 . 2 0  1.60 0 1~.69 m 2 . 1 9  
Figure 5. The first seven generations of Farey numbers s w i n g  from f and 3.  Above: exact; 
below: decimal approximation. The different shaded mas represent the presence of the value 
in the measurements on the crystal with the indicated composition x .  

Regarding the interpretation of the lock-in phases we can use the results of the 
microscopic model as discussed in the introduction in terms of the relevant series of Farey 
numbers. These series provide us with the possible values of the modulation wave vector 
describing the lock-in phases. We used the following procedure. First we determined the 
error in the measurement. Second we determined all possible Farey numbers of the two 
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relevant cases: the first where the ‘boundary’ phases were and 2, the second where these 
phases were $ and +. The relevance of the starting values of the first series becomes clear 
if one looks at figure 1. Here, one sees that the incommensurate phase, and thus all phases 
lying within the incommensurate phase, for values x > 0 is bounded by a 3 and a $ phase. 
The boundary due to the p phase is not relevant as for our measurements (x  > 0) the value 
of y always is less than 2. The boundary value $ of the second series is not present in 
figure 1, but it is in the unified phase diagram of Gesi [19, figure 91. In all cases, the new 
phases ‘emerge’ from the two boundary phases, when the temperature andlor pressure is 
changed. We took the first seven generations of the Farey numbers, because this is sufficient 
to determine a value of the modulation wave parameter, lying within the experimental error, 
uniquely. The resulting series are given in figures 5 for x > 0 and 6 for x = 0. Third we 
evaluated all stable values for the wave vector, i.e. values that were more or less constant 
on a plateau over a temperature range of a few degrees Celsius within a single experimental 
run, and chose the Farey number with the smallest integers n and m to describe this stable 
wave vector, with the value n/m lying within the experimental error. Of course it is possible 
to use further generations of the Farey numbers to obtain ‘exactly’ the experimental value, 
buf generally, this would imply relatively large values for n and m. The relevance of such 
large values like for example m > 30 can be questioned as it would imply a superstructure 
ordering consisting of thirty or more unit cells of the basic smcture. Though not impossible, 
practical crystals contain many irregularities as discussed above so that such large values 
€or the modulation wave vector are expected to be pinned down to smaller ones. On the 
other hand, it is then surprising that the value found experimentally is still well defined and 
does not cover a range of different values determined by the defect structure of the actual 
crystal. 

In this way, we obtained for the crystals containing Br the values given in table 1. In 
figure 5 these values are indicated by different types of shading. It is not easy to find a 
correlation between the value of x (read pressure) and the presence of the different Farey 
numbers. In the case x = 0, the value of y is always somewhat larger than and in that 
case the second series of Farey numbers is relevant (figure 6). Here we found a single stable 
value of &. In the phase diagram of Gesi, the region where the stable phase with y = $ 
exists lies at pressures below the unified pressure of the x = 0 compound. Hence, the ft 
phase emerges from a phase which, though not present in the compound, still is reminiscent. 
The same commensurate value y = & was reported in [(CH3)&7JzZnC4 crystals which 
were irradiated with high-energy x-rays in order to induce defects [26]. The size of the & 
plateau increased with the radiation exposure time. 

L J P Vogels et a1 

5. Conclusions 

Although the present investigation is far from complete, the results of our experiments 
indicate that it is possible to interpret measurements of the modulation wave vector 
in incommensurate crystal phases, showing different commensurate subphases, in terms 
of the microscopic model mentioned. Besides a confirmation of the presence of the 
morphologically found y = & commensurate phases in [(CH3)4NJ2ZnC4-xBrx we found 
some seven other commensurate phases stable in small but finite temperature ranges. 
Although the indexing of the corresponding modulation wave vectors is not unique, 
especially when one allows large supercells, we chose an indexing based on Farey numbers 
resulting from the microscopic one-dimensional frustrated @4 model worked out by Janssen 
and Tjon. This model fits very well in the unified description of Gesi. It would therefore be 
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E 0.00 
Figure 6. As figure 5, but now with starling values 3 and 3. which are relevant for the 
composition x = 0. 

interesting to study the presence of commensurate phases within this unified phase diagram 
also experimentally in more detail, especially within the incommensurate phases of crystals 
with an average B-K2S04 structure. As it is, however, known that defects in this type of 
crystals can result in metastable lock-in phases, this aspect will also have to be taken into 
account in such investigations. 
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